Product Description

Business type

Manufacturer & Exporter

Main export market

Europe, North and South America, Southeast Asia, Oceania, Middle East, Africa

Material

Alloy Steel, Carbon Steel, Stainless Steel,Aluminum, Copper, Brass

Manufacturing method

Forged and then machined, hobbed, if need can also weld

Heat treatment

Hardening and Tempering, High Frequency Quenching, Carburizing Quenching

Surface treatment

Oxide black, Galvanized, Nickel plated, Chrome plated,Painted and so on

Model

ANSI: 25/35/41/40/50/60/80/100/120/140/160/180/200/240

DIN/ISO:04C/06C/085/08A/10A/12A/16A/20A/24A/28A/32A/36A/40A/48A

DIN/ISO:04B/05B/06B/08B/10B/12B/16B/20B/24B/28B/32B/36B/40B/48B

Process

Forging, Hobbing, Precision machining

Teeth

8T-100T

Type

Type A sprockets :Plate (without Hub)

Type B sprockets:One side with hub

Type C sprockets: Double side with hub

Finished bore sprockets:With the inner hole ,keyway and screw

1.Fast delivery: Standard products can be delivered in as fast as 20 days
2.Good service: timely reply, prompt quotation, responsible for the product
3.High cost performance: can maintain price stability for a certain period of time, bringing greater profits to customers
4.Good quality: production and testing have corresponding supervision to ensure product quality and get high praise from customers
5.OEM service: products can be customized according to drawings and requirements

We are responsible for the ordered products. We are very confident in the products we produce. Of course, if you have any problems after receiving the goods, you can contact us directly. We will confirm and negotiate in time to solve your difficulties.


  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Manufacturing Method: Smithing
Toothed Portion Shape: Harden Tooth
Material: Steel, C45 Steel,A3 Steel,Stainless Steel,40cr
Samples:
US$ 35/kg
1 kg(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

wheel sprocket

Alternatives to Chain Sprockets in wheel sprocket Configuration

While chain sprockets are commonly used in wheel sprocket configurations, there are alternative methods for power transmission in various applications:

  • Gear and Gear Rack: Gears are toothed wheels that mesh with each other to transmit power. Instead of using a chain and sprocket, gears can directly engage with each other, offering a smooth and efficient power transfer. Gear racks, which are linear gears, can be used in place of wheels for linear motion applications.
  • Belt and Pulley: Belts and pulleys offer a flexible and quiet means of power transmission. They work similarly to chain and sprocket systems but use belts instead of chains. Pulleys have grooves that grip the belt, allowing power to be transferred between the pulleys.
  • Gear Train: A gear train consists of multiple gears meshed together to achieve specific speed and torque ratios. Gear trains are often used in complex machinery and mechanical systems where precise power transmission is required.
  • Direct Drive: In some applications, direct drive mechanisms can be used, where the motor or power source is directly connected to the wheel or load without any intermediate components like sprockets or gears.
  • Friction Drive: Friction drive systems use the friction between two surfaces to transfer power. One surface, such as a rubber wheel, is pressed against another surface to achieve power transmission.

The choice of alternative power transmission methods depends on various factors, including the application requirements, available space, speed, torque, and efficiency considerations. Each alternative method has its advantages and limitations, and the selection should be based on the specific needs of the mechanical system.

When considering alternatives to chain sprockets, it is essential to analyze the requirements of your application and consult with engineering experts or manufacturers to determine the most suitable method of power transmission for optimal performance and longevity.

wheel sprocket

Choosing the Right Material for a Sprocket to Ensure Longevity

Choosing the right material for a sprocket is crucial to ensure its longevity and reliable performance in a given application. The material selection depends on various factors such as load, speed, operating environment, and budget. Here are some common materials used for sprockets and their considerations:

  • Steel: Steel sprockets are widely used in a wide range of applications due to their excellent strength, durability, and wear resistance. They are suitable for heavy-duty and high-speed operations. Different grades of steel, such as carbon steel or alloy steel, offer varying levels of hardness and strength.
  • Stainless Steel: Stainless steel sprockets are preferred when corrosion resistance is essential, making them suitable for applications where the sprocket is exposed to moisture, chemicals, or outdoor elements. They are commonly used in food processing, pharmaceutical, and marine industries.
  • Cast Iron: Cast iron sprockets offer good wear resistance and are often used in low to medium-speed applications. They are cost-effective and provide excellent performance in less demanding conditions.
  • Plastics: Plastic sprockets are lightweight and corrosion-resistant. They are commonly used in applications where low noise, self-lubrication, and resistance to chemicals or moisture are required. However, they have limited load-carrying capacity and may not be suitable for heavy-duty applications.
  • Aluminum: Aluminum sprockets are lightweight and commonly used in applications where weight reduction is critical, such as aerospace and certain machinery. However, they are not as durable as steel sprockets and are not suitable for high loads or harsh environments.

When choosing the right material for a sprocket, consider the following:

  • Load Capacity: Select a material that can handle the expected loads in the application without deforming or wearing excessively.
  • Speed: Higher speeds may require materials with better heat dissipation and wear resistance.
  • Environment: Consider factors such as moisture, chemicals, temperature, and outdoor exposure. Choose a material with suitable corrosion resistance and resilience to environmental conditions.
  • Maintenance: Some materials may require more frequent maintenance or lubrication to ensure longevity.
  • Cost: Balance the material’s performance with the budget constraints of the project.

It’s essential to consult with sprocket manufacturers or material experts to determine the most appropriate material for your specific application. They can provide valuable insights and recommendations based on your requirements, helping to ensure the longevity and optimal performance of the sprocket in your machinery or equipment.

wheel sprocket

Working Principle of a wheel sprocket System

In a wheel sprocket system, the sprocket is a toothed wheel that meshes with a chain or a belt to transmit rotational motion and power from one component to another. The working principle can be explained in the following steps:

1. Power Input:

The system begins with a power input source, such as an electric motor or an engine, that generates rotational motion or torque.

2. Sprocket and Chain/Belt:

The power is transferred to the sprocket, which is mounted on a shaft. The sprocket has teeth that fit into the gaps of the chain or engage with the teeth of the belt.

3. Chain/Belt Movement:

As the sprocket rotates, it pulls the chain or belt along with it due to the engagement between the teeth. This movement is transmitted to the connected component, which could be another sprocket, a wheel, or any other part of the machinery.

4. Power Output:

The rotational motion or power is then delivered to the connected component, which performs a specific function depending on the application. For example, the power could be used to drive a conveyor belt, rotate the wheels of a vehicle, or operate various industrial machines.

5. Speed and Torque:

The size of the sprocket and the number of teeth, along with the size of the chain or belt, determine the speed and torque ratio between the input and output components. Changing the size of the sprocket or using different-sized sprockets in the system can alter the speed and torque characteristics of the machinery.

6. Efficiency and Maintenance:

Efficient power transmission relies on proper alignment and tension of the chain or belt with the sprocket. Regular maintenance, such as lubrication and inspection, is essential to ensure smooth operation and prevent premature wear or damage to the system.

The wheel sprocket system is widely used in various applications, including bicycles, motorcycles, industrial machinery, agricultural equipment, and more, where efficient power transmission and motion control are required.

China OEM Factory OEM Steel Hard Teeth Roller Chain Sprocket Without Hub  China OEM Factory OEM Steel Hard Teeth Roller Chain Sprocket Without Hub
editor by Dream 2024-05-03